Non-intrusive On-chip Debug Hardware Accelerates Development for
MIPS RISC Processors

Special for EE Times

Author: Morten Zilmer, Design Engineer, MIPS Technologies, Inc.

Overview

The proliferation of high performance 32- and 64-bit RISC processors have been
a boon to designers of next generation systems in digital consumer electronics,
information appliances, set-top boxes, and office automation applications. With
new design methodologies and advances in manufacturing processes, powerful
RISC processors can now be easily integrated into a variety of custom ASICs.
But with this new capability, comes the traditional burden of providing effective
debug and development tools.

On the one hand, the powerful software and development tools that come with
the MIPS RISC 32-bit and 64-bit processor architecture, such as highly optimized
compilers and integrated development environments, and modular real-time
operating systems software make software development easier. But, unlike
traditional workstation or PC-oriented application software that executes in the
same platform in which the software is developed, embedded system software
will execute on a separate target system with extremely limited memory and 1/O
resources. Debugging and hardware/software integration can become a
significant hurdle to fast prototype development and ultimately to hitting the
market opportunity window.

MIPS Technologies, Inc. and the MIPS architecture licensees have developed
the industry's broadest range of new 32-bit and 64-bit processor implementations
spanning the spectrum of price, performance and on-chip peripheral options.

Through the MIPS semiconductor licensees, system OEMs can choose an

appropriate processor configuration and select from a wide variety of peripheral
options. They can then quickly incorporate that design into custom ASICs that
provide the optimum power consumption and compact size for their application.
But, how do you quickly and inexpensively debug a one-of-a-kind system-on-
chip? Typically, hardware development tools lag the appearance of new
generation architectures by a significant amount of time and generally only follow
when there is a large design community. When you are designing a one-of-a-kind
system, you need a more immediate option.

MIPS Technologies, Inc. and the MIPS RISC consortium have developed a
specialized hardware debug technology called MIPS EJTAG. EJTAG is
inexpensive, easy to implement and provides non-intrusive debug capabilities for
any MIPS RISC processor-based system-on-a-chip that incorporates it. It has
been published (EJTAG Specification, version 2.x) for use as an industry-wide
standard and is being implemented in almost all the MIPS processor products by
MIPS licensees, and all the processor core products from MIPS Technologies,

Inc.

EJTAG Re-Uses IEEE JTAG Boundary Scan Pins for Basic Debug Interface

To keep on-chip costs low, and to minimize any target system overhead, the
MIPS EJTAG utilizes the widely used IEEE JTAG pins for its debug functions.
Using special debug circuitry on-chip, the EJTAG provides run control,
breakpoints on both data and instructions, real-time Program Counter trace. In
addition, individual licensees can add additional features when desired. Such
features could include complex breakpoints and execution profiling features.
On-chip debug provides some new tools for debugging embedded CPUs that
avoid the limitations of traditional hardware debug tools. For example, it is not
possible to use a logic analyzer to track operations that take place between the
CPU and the on-chip data and instruction caches. But, on-chip EJTAG can track
these operations. Also, using In-Circuit Emulators with high-speed systems is

often problematical because they affect the bus loading characteristics of the

system and can induce "tool-related" bugs into the system. In addition, they are
rarely available for on-of-a-kind system-on-a-chip. Finally, some solutions require
special bond-out chips that provide extra control signals and busses. But, this is
additional design overhead in both chip and board design and it adds more
precious time to the product cycle. EJTAG obtains the same results without the
additional time and cost.

EJTAG utilizes the 5-pin IEEE 1149.1 JTAG specification for off-chip
communications. These signals, called the Test Access Port or TAP include
TRST (reset), TCK (clock), TMS (Test Mode Select), TDI (Data In) and TDO
(Data Out). Internally as shown in Figure 1, EJTAG provides for a set of
instruction, data and control registers and circuitry to access the address and

data busses.

EJTAG Circuitry

TRET ————»
TG ot TAP Cantraller "
I — L]
Tek 1l Direct |Adkir 4| CPU
Memory | Dita
0O Access 4 s [P oub
— zhug
™ 1 g . B Addr. Registars
Instruction, Data &| . | Frocessor -+ *
Control Registers | > Access Jrta 228 [system
Memaory
-

Address/
Data Busses

MIPS RISC Processar

Figure 1 - EJTAG uses the 5-pin JTAG interface to access internal debug registers, and circuitry
that monitors and controls the address and data busses of the processor (Note: Direct Memory
Access is proposed but not implemented as of today)

The EJTAG interface through the TAP is a serial communication port with a
clocking frequency of 40 MHz or more. The Control pins switch between data
registers and instruction registers whose contents are send in and out serially.

Special instructions defined in the EJTAG specification defines what registers are

selected and how they are used. The following table shows the EJTAG

instruction and the description of each.

EJTAG Instruction Description of Register Usage

IDCODE Device Identification Register with manufacturer,
part number, and version ID for this specific chip.

Implementation Register indicating implemented

ImpCode
EJTAG features in this device.

EJTAG Address Register used to access the on-
EJTAG_ADDRESS_IR
chip address bus.

EJTAG Data Register used to access the on-
EJTAG_DATA_IR
chip data bus.

EJTAG Control Register used for setup and
EJTAG_CONTROL_IR
status information.

Access to EJTAG Address, Data and Control

EJTAG_ALL_IR
registers in one chain.
PC Trace Setup for start of PC Trace.
BYPASS One-bit register with no operation.

EJTAG registers are generally 32-bit wide (depending on implementation) and
are used to set up the debug resources and capture debug status information
during the debug operation.

Operation of the EJTAG circuitry is controlled through a EJTAG probe that

interfaces between the host development system and the target device as shown

in Figure 2.
Debug Host System Target
— ,? EITAG probe system-on-a-chip
: TAP access |0 Sy 5] MIPS RISC

Y @] processor

: — 0-20; [SE| with on-chip
mu:[u]r' Trace Capture ¢ 7 = peripherals

Figure 2 - A simple EJTAG debug probe provides easy access to internal processor resources for
any host development system.

Debug Operations

The Processor Access is used to setup and monitor the processor internal
busses and to execute the code from the EJTAG interface. In order to provide
debug code without integrating it into in the application code, the EJTAG
Processor Access circuitry shares a specific memory location (OxFF20.0000 to
OxFF2F.FFFF in the 32-bit address space) that can replace system memory in
debug mode. When the processor accesses this memory space, the EJTAG
circuitry can feed it debug instructions not resident in the application code.
When an access is detected, the EJTAG circuitry makes the transaction address
available in the EJTAG Address Register, and the appropriate data available in
the EJTAG Data Register available if the operation is a write, and the appropriate
data is inserted into the EJTAG Data Register if the operation is a read. It takes
about 200 TCK periods to access 32-bit address and data registers in this
fashion, so with a 40 MHz TCK frequency, the access time is in the range of 5
us.

An added benefit of the EJTAG implementation is that it can be used to provide
reprogramming of any in-system programmable FLASH memory that may be in
the system. This makes it possible to upgrade in final production and even in the
field.

CPU Debug Features

The EJTAG debug features do require high integration with the on-board CPU.
The CPU must provide a special debug mode, registers, and instructions to
support the debug process. One of the most important features is a high priority
debug exception that has a higher priority over all other exceptions. The debug

exception can occur when a Software Debug Breakpoint instruction is

encountered, a Single Step instruction takes occurs, a JtagBrk debug event is
registered by the EJTAG circuit, or a Hardware Breakpoint occurs.

The Software Debug Breakpoint (SDBBP) instruction is defined for MIPS
Instruction Set Architecture and for the code compression Application Specific
Extension MIPS16. For simple breakpoints, the debug system can replace
application code instructions with software breakpoint instructions and generate a
debug exception.

When the debug exception occurs, the CPU switches into debug mode where
there are no restrictions on access to coprocessors and memory, and where the
usual exceptions like address error and interrupt are masked.

The debug exception handler is provided by the debug system and can be
executed through the EJTAG port using the processor access circuitry or it can
be placed in application code space if the system developer so chooses.

Debug registers are DEBUG, DEPC, and DESAVE registers which are added to
the MIPS Coprocessor 0 (CP0). The DEBUG register shows the cause of the
debug exception and any other standard exceptions that may have occurred at
the same time. Also, it is used for the setting up of single step operations. The
DEPC or Debug Exception Program Counter Register holds the address of
where the debug exception occurred. This is used to resume program execution
after the debug operation finishes. Finally, DESAVE or Debug Exception Save
Register is a scratch pad for one of the general-purpose 32-bit registers of the
processor. This frees up the general purpose registers from duty in handling the
debug exception handler. This lets the debug exception handler execute without

affecting the contents of any of the general-purpose registers.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints defined in the EJTAG
specification. These stop the normal operation of the CPU and force the system
into debug mode. The break occurs when certain activities take place on the

CPU address, data and control busses. The debug exception occurs before the

bus transaction occurs preserving any contents in the register file or memory.
Hardware breaks, unlike software breaks, can be made based on the address on
the memory bus, so breakpoints can be set for access to any area of memory
(not just legitimate software accesses). Hardware breaks also enable breaks on
load/store operations.

Generally, breakpoints are setup in debug mode and become operational when
normal operational mode is re-entered. There are three types of simple hardware
breakpoints: Instruction breakpoints, Data breakpoints, and Processor Bus
breakpoints.

Instruction breaks occur on instruction fetch operations and the break is set on
virtual address on the bus between the CPU and the instruction cache.
Instruction breaks can also be set on the Address Space ID or ASID value used
by the Memory Management Unit. Finally, a mask can be applied to the virtual
address to set breakpoints on a range of instructions.

Data breakpoints occur on load/store transactions and the breakpoint is set on
virtual address and ASID values in similar fashion as the Instruction breakpoint.
Data breakpoints can be set on a load, a store or both. Data breakpoints can also
be set based on the value of the load/store operation. Finally, masks can be
applied to both the virtual address and the load/store value.

Processor bus breakpoints occur on transactions on the system bus. Processor
bus breakpoints are set on physical address values and/or on the fetch/load/store
data value. Masks can also be applied to both the physical address and the
fetch/load/store data value.

There are up to 45 break channels (15 of each type) defined in the specification.
The actual number available will depend upon the amount of debug hardware
circuitry added to the chip. With the maximum number of breakpoint hardware, it
is possible to have up to 45 concurrent breakpoints set all independent of each

other with separate breakpoint values.

Real-time Program Counter Trace

One of the major difficulties in debugging a high performance CPU with on-chip
caches, is obtaining real-time access to the program counter. EJTAG real-time
PC trace makes it possible to monitor the operation of embedded CPUs with no
real-time impact on code execution.

Real-time Program Counter Trace does require some additional pins on the chip
however. The number of pins required depends upon the CPU speed. Depending
upon the number of available pins and the clock frequency for outputting the PC
trace values, the processor may continue at full speed, or it may be forced to stall
while the debug data transfer is completed. An implementation for the JADE 32-
bit processor cores from MIPS Technologies, Inc, a very compact, but powerful
32-bit MIPS RISC processor implementation can utilize from 4 to 11 pins for PC
trace. At 4 pins, the trace captures around 40 percent of the available data before
delays occur, while with 11 pins, 100 percent capture is achieved with no stalls.
The trace provides program counter information from a specified anchor point.
When the instructions flow sequentially there is no need for continuous updating
of the PC value. Only when the program counter changes via a jump, branch or
exception is there a need to provide updated program counter values. At the
occurrence of a jump, branch or exception, information indicating what kind of
change in the program flow occurred, and indication of the resulting new value of
the program counter is provided. In the case of an exception, the type of
exception is also provided.

Only a small number of pins are required because only changes in the program
counter need be transferred. Depending upon the speed of the processor, it may
be possible to capture sufficient information with the minimum four-pin interface.

At higher speeds, it may require more to maintain real-time trace capabilities.

Conclusion

EJTAG is a powerful new non-intrusive development and debug technology that
can provide many of the high performance, real-time debug features needed to

rapidly develop high performance embedded systems, at a very low system cost.

Using the pre-existing JTAG Boundary Scan interface, the 5-pin EJTAG interface
provides hardware breakpoints, unlimited software breakpoints, and real-time
Program Counter trace with a minimum of hardware overhead. It can be easily
incorporated into MIPS RISC processors used in system-on-a-chip devices and

while adding very little system cost; it can greatly accelerate system design.

